Math 484: Nonlinear programming

Chapter 1: Lecture 1

Important course information

- The first homework assignment is due on Wednesday, 1-24
- The course webpage is hosted on Canvas, at canvas.illinois.edu
- Homework assignments and solutions, as well as quiz and test grades, will be posted on Canvas
- Lecture slides will be posted on Canvas, but you will need to come to class to learn the course content

What is nonlinear programming?

 $\label{eq:programming} \mathsf{Programming} = \mathsf{optimization}$

$$egin{aligned} & \min_{(x_1,\ldots,x_n)\in\mathbb{R}^n} & f(x_1,\ldots,x_n) \ & ext{subject to} & g_1(x_1,\ldots,x_n) \leq 0 \ & dots \ & g_m(x_1,\ldots,x_n) \leq 0 \end{aligned}$$

Today

$\min_{x\in\mathbb{R}} \quad f(x)$

イロト イヨト イヨト イヨト

3

4 / 12

Definitions

Let $D \subseteq \mathbb{R}$, and let $f : D \to \mathbb{R}$ be a function. We say that a value $x^* \in \mathbb{R}$ is a *global minimizer* if $f(x^*) \leq f(x)$ for all $x \in D$.

Examples, with
$$D = \mathbb{R}$$
:
• $f(x) = (x - 2)^2 + 3$
• $f(x) = -(x - 2)^2 + 3$
• $f(x) = 0$

Definitions

Let $D \subseteq \mathbb{R}$, and let $f : D \to \mathbb{R}$ be a function. We say that a value $x^* \in \mathbb{R}$ is a *local minimizer* if there exists a value r > 0 such that $f(x^*) \leq f(x)$ for all $x \in (x^* - r, x^* + r) \cap D$.

Examples, with $D = \mathbb{R}$:

•
$$f(x) = \sin x$$

•
$$f(x) = \lfloor x \rfloor$$

Definitions

We say that x^* is a *strict* (global or local) minimizer if the inequality in the definition is strict. In other words, $f(x^*) < f(x)$ for all relevant $x \neq x^*$.

We can define *maximizers* by flipping the inequality symbols in all previous definitions.

Existence of global minimizers

Theorem (Extreme value theorem) Let $a \leq b$ be real numbers. If $f : [a, b] \rightarrow \mathbb{R}$ is a continuous function, then f has a global minimizer $x^* \in [a, b]$.

Existence of global minimizers

A function $f : \mathbb{R} \to \mathbb{R}$ is *coercive* if

$$\lim_{x\to\infty}f(x)=\lim_{x\to-\infty}f(x)=\infty.$$

Proposition

If $f : \mathbb{R} \to \mathbb{R}$ is coercive and continuous, then f has a global minimizer.

Write f(0) = c. As $\lim_{x\to -\infty} f(x) = \infty$, there exists $a \in \mathbb{R}$ such that for all x < a, f(x) > c. Similarly, there exists $b \in \mathbb{R}$ such that for all x > b, f(x) > c. Observe that f(x) > c for all $x \notin [a, b]$, so $0 \in [a, b]$.

By the extreme value theorem, f has a global minimizer x^* when the domain of f is restricted to [a, b]. We claim that x^* is a global minimizer of f over the domain \mathbb{R} .

We aim to show that $f(x^*) \leq f(x)$ for all $x \in \mathbb{R}$. If $x \in [a, b]$, then $f(x) \leq f(x^*)$, as x^* is a global minimizer over the domain [a, b]. If $x \notin [a, b]$, then as $f(x^*) \leq f(x')$ for all $x' \in [a, b]$, it follows that

$$f(x^*) \le f(0) = c < f(x).$$

Hence, x^* is a global minimizer of f.

First derivative test

Theorem (Theorem 1.1.4)

Let $I \subseteq \mathbb{R}$ be an interval. If $f : I \to \mathbb{R}$ is a differentiable function and x^* is a local minimizer, then $f'(x^*) = 0$, or x^* is an endpoint of I.

- Why do we need to assume differentiability?
- Why is this not a biconditional?

First derivative test

Theorem (Theorem 1.1.4)

Let $I \subseteq \mathbb{R}$ be an interval. If $f : I \to \mathbb{R}$ is a differentiable function and x^* is a local minimizer, then $f'(x^*) = 0$, or x^* is an endpoint of I.

- Why do we need to assume differentiability?
- Why is this not a biconditional?

If $f'(x^*)$ exists and equals 0, then x^* is a *critical point* of f.

Theorem (Theorem 1.1.5)

If $f : \mathbb{R} \to \mathbb{R}$ is a function with a continuous second derivative and x^* is a critical point of f, then:

- If $f''(x) \ge 0$ for all $x \in \mathbb{R}$, then x^* is a global minimizer on \mathbb{R} .
- If there exists an interval [a, b] containing x* so that f"(x) ≥ 0 for all x ∈ [a, b], then x* is a global minimizer on [a, b].
- If $f''(x^*) > 0$ then x^* is a local minimzer.

Theorem (Theorem 1.1.5)

If $f : \mathbb{R} \to \mathbb{R}$ is a function with a continuous second derivative and x^* is a critical point of f, then:

- If $f''(x) \ge 0$ for all $x \in \mathbb{R}$, then x^* is a global minimizer on \mathbb{R} .
- If there exists an interval [a, b] containing x* so that f"(x) ≥ 0 for all x ∈ [a, b], then x* is a global minimizer on [a, b].
- If $f''(x^*) > 0$ then x^* is a local minimzer.

By Taylor's theorem, for each $x \in \mathbb{R}$, there exists a value ζ between x and x^* such that

$$f(x)=f(x^*)+f'(x^*)(x-x^*)+rac{1}{2}f''(\zeta)(x-x^*)^2.$$