Math 484: Nonlinear programming

Chapter 1: Lecture 4

A symmetric $n \times n$ matrix A is:

- positive definite if $\mathbf{x}^T A \mathbf{x} > 0$ for all nonzero $\mathbf{x} \in \mathbb{R}^n$
- positive semidefinite if $\mathbf{x}^T A \mathbf{x} \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$
- negative definite if $\mathbf{x}^T A \mathbf{x} < 0$ for all nonzero $\mathbf{x} \in \mathbb{R}^n$
- negative semidefinite if $\mathbf{x}^T A \mathbf{x} \leq \mathbf{0}$ for all $\mathbf{x} \in \mathbb{R}^n$

We say that A is *indefinite* if none of these apply.

The *quadratic form* of a symmetric matrix A is a function $f : \mathbb{R}^n \to \mathbb{R}$ with the form $\mathbf{x} \mapsto \mathbf{x}^T A \mathbf{x}$.

We say that f is *positive/negative (semi)definite* if and only if A is positive/negative (semi)definite.

Quadratic forms

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function. The function f is a quadratic form of some symmetric matrix A if and only if f has a polynomial representation in which each nonzero term has degree 2.

Restating a previous theorem

Theorem

Let $D \subseteq \mathbb{R}^n$ be an open set. Let $f : D \to \mathbb{R}$ be a function, and suppose $\mathbf{x}^* \in D$ is a critical point of f. If there exists a value r > 0 such that

 $\mathbf{u}^T Hf(\mathbf{x}) \mathbf{u} \geq 0$ for all $\mathbf{u} \in \mathbb{R}^n$ and $\mathbf{x} \in B(\mathbf{x}^*, r)$,

then \mathbf{x}^* is a local minimizer of f.

Restating a previous theorem

Theorem

Let $D \subseteq \mathbb{R}^n$ be an open set. Let $f : D \to \mathbb{R}$ be a function, and suppose $\mathbf{x}^* \in D$ is a critical point of f. If there exists a value r > 0 such that

 $Hf(\mathbf{x})$ is positive semidefinite for all $\mathbf{x} \in B(\mathbf{x}^*, \mathbf{r})$,

then \mathbf{x}^* is a local minimizer of f.

Characterizing definite matrices

Theorem (Spectral theorem)

A matrix A is symmetric if and only if there exists an orthogonal matrix Q and a diagonal matrix Λ such that

$$A = Q \Lambda Q^{T}.$$

The entries of Λ are the eigenvalues of A, and the columns of Q are the eigenvectors of A.

Characterizing definite matrices

- A symmetric matrix A is:
 - Positive definite iff all eigenvalues of A are positive
 - Positive semidefinite iff all eigenvalues of A are nonnegative
 - Negative definite iff all eigenvalues of A are negative
 - Negative semidefinite iff all eigenvalues of A are nonpositive
 - Indefinite iff A has both a positive and a negative eigenvalue

Proposition

Let A be a symmetric $n \times n$ matrix. A is positive definite if and only if all eigenvalues of A are positive.

- If *A* is positive definite:
 - Let λ be an eigenvalue of A, with an eigenvector **v**.
 - Consider the product $\mathbf{v}^T A \mathbf{v}$.

Proposition

Let A be a symmetric $n \times n$ matrix. A is positive definite if and only if all eigenvalues of A are positive.

- If *A* is positive definite:
 - Let λ be an eigenvalue of A, with an eigenvector \mathbf{v} .
 - Consider the product $\mathbf{v}^T A \mathbf{v}$.

If all eigenvalues of A are positive:

- Let $\mathbf{x} \neq \mathbf{0}$.
- Use the spectral theorem to express **x**^TA**x** as a positive sum.

Saddle points

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function for which Hf is continuous, and let $\mathbf{x}^* \in \mathbb{R}^n$ be a critical point of f. If Hf(\mathbf{x}^*) is indefinite, then \mathbf{x}^* is neither a local minimizer nor a local maximizer; it is a saddle point of \mathbf{x}^* .