# Math 484: Nonlinear programming

#### Chapter 1: Lecture 2

The goal of this lecture is to review some important properties of *n*-dimensional real space.

We write

$$\mathbb{R}^n = \{ (x_1, \ldots, x_n) : x_1, \ldots, x_n \in \mathbb{R} \}.$$

 $\mathbb{R}^n$  is a

- Vector space (We can apply linear transformations to R<sup>n</sup>)
- Metric space
  (We have a notion of distance in R<sup>n</sup>)
- Topological space
  (We have a notion of open and closed sets in R<sup>n</sup>)

### Brief review of vector spaces

Recall that a vector space is a set of objects (called *vectors*) which is equipped with a field (in this case  $\mathbb{R}$ ). Here are some important properties of vectors:

- The sum of two vectors is a vector.
- The product of a vector with a field element (scalar) is a vector.
- Vectors can be multiplied using an *inner product* to produce a scalar.

#### Brief review of matrices

Recall that a (real) matrix is an  $n \times m$  grid of real numbers. We can interpret a row or column of a real matrix as a vector in  $\mathbb{R}^m$  or  $\mathbb{R}^n$ .

We write  $A_{ij}$  for the row *i*, column *j* entry of a matrix *A*. If *A* is an  $\ell \times n$  matrix and *B* is an  $n \times m$  matrix, then the product matrix *AB* (which is size  $\ell \times m$ ) can be expressed by the formula:

$$(AB)_{ij} = \sum_{k=1}^n A_{ik} B_{kj}.$$

#### Another useful matrix formula

If 
$$\mathbf{u}^T = [u_1, \dots, u_n]$$
,  $\mathbf{v}^T = [v_1, \dots, v_m]$ , and  $A$  is an  $n \times m$  matrix, then

$$\mathbf{u}^T A \mathbf{v} = \sum_{i=1}^n \sum_{j=1}^m u_i A_{ij} v_j.$$

(日) (四) (日) (日) (日)

э

## Brief introduction to inner products

An inner product is defined on a vector space in order to introduce a notion of geometric concepts, like distance and angle.

An *inner product* on a vector space V with a field  $\mathbb{R}$  is a binary operation  $\cdot : V \times V \to \mathbb{R}$  that satisfies the following properties:

• 
$$(\alpha \mathbf{x}) \cdot \mathbf{z} = \alpha(\mathbf{x} \cdot \mathbf{z})$$

• 
$$(\mathbf{x} + \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z}$$

• 
$$\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$$
.

x ⋅ x ≥ 0 for all x ∈ V, and x ⋅ x = 0 if and only if x is the zero vector.

## Vector norms

An inner product allows us to define a *norm* on a vector space, which gives us a way of measuring how close a vector is to zero.

Formally, a *norm* is a function  $\|\cdot\| : V \to \mathbb{R}$  defined  $\|\mathbf{x}\| = (\mathbf{x} \cdot \mathbf{x})^{1/2}$ .

A norm satisfies the following properties:

• 
$$\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$$

•  $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$  (Triangle Inequality)

•  $|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| ||\mathbf{y}||$  (Cauchy-Schwarz)

#### Inner product space geometry

We define the *angle* between two vectors **x** and **y** with the formula

$$\mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta.$$

When using the standard inner product in  $\mathbb{R}^n$ , the angle  $\theta$  is equal to the physical angle between **x** and **y** when they are represented as arrows.

What does it mean if  $\mathbf{x} \cdot \mathbf{y} = 0$ ?

8/13

A *topology* on a set is a notion of *open* and *closed* subsets. We can define a topology on a set in order to use ideas like continuity, and to apply useful tools like the extreme value theorem.

Given a vector  $\mathbf{x} \in \mathbb{R}^n$  and a value r > 0, the open ball of radius r around  $\mathbf{x}$  is defined as

$$B(\mathbf{x}, r) = {\mathbf{y} \in \mathbb{R}^n : ||\mathbf{x} - \mathbf{y}|| < r}.$$

We say that a subset  $S \subseteq \mathbb{R}^n$  is *open* if for every point  $\mathbf{x} \in S$  there exists r > 0 such that  $B(\mathbf{x}, r) \subseteq S$ .



10/13

Given a subset  $S \subseteq \mathbb{R}^n$ , we say that  $\mathbf{x} \in \mathbb{R}^n$  is a *boundary point* of S if for every r > 0,

 $S \cap B(\mathbf{x}, r) \neq \emptyset$  and  $(\mathbb{R}^n \setminus S) \cap B(\mathbf{x}, r) \neq \emptyset.$ 

In other words, every open ball around  $\mathbf{x}$ , has a point inside S and a point outside S.

Given a subset  $S \subseteq \mathbb{R}^n$ , we say that  $\mathbf{x} \in \mathbb{R}^n$  is a *boundary point* of S if for every r > 0,

 $S \cap B(\mathbf{x}, r) \neq \emptyset$  and  $(\mathbb{R}^n \setminus S) \cap B(\mathbf{x}, r) \neq \emptyset.$ 

In other words, every open ball around  $\mathbf{x}$ , has a point inside S and a point outside S.

A subset  $S \subseteq \mathbb{R}^n$  is open if and only if no point  $\mathbf{x} \in S$  is a boundary point of S.

We say that a subset  $S \subseteq \mathbb{R}^n$  is *closed* if  $\mathbb{R}^n \setminus S$  is open.



S is closed if and only if every boundary point of S belongs to S.

For each of the following sets, decide whether the set is open, closed, both, or neither.

- $\mathbb{R}^n$  (taken as a subset of  $\mathbb{R}^n$ )
- $\emptyset$  (taken as a subset of  $\mathbb{R}^n$ )
- $(1,\infty)$  (taken as a subset of  $\mathbb R$ )
- $[1,\infty)$  (taken as a subset of  $\mathbb{R}$ )
- $\{\mathbf{0}\}$  (taken as a subset of  $\mathbb{R}^n$ )