Brualdi Chapter 2

1-25

Brualdi Chapter 2

1-25

æ

◆□ > ◆圖 > ◆臣 > ◆臣 > ○

1/13

This lecture will contain many proof techniques that can be used when dealing with binomial coefficients. This lecture is difficult, yet extremely important. It may take two days to complete.

Section 2.3

 $\binom{n}{k}$ is the number of subsets of $\{1, \ldots, n\}$ of size k.

Alternatively, $\binom{n}{k}$ is the number of ways to choose a committee of k people from a group of n people.

If
$$k > n$$
, then $\binom{n}{k} = 0$.

• • = • • = •

Theorem If $n \ge k \ge m \ge 0$ are integers, then $\binom{n}{k}\binom{k}{m} = \binom{n}{m}\binom{n-m}{k-m}$.

Brualdi Chapter 2

1-25

4 / 13

▶ < 글 ▶ < 글 ▶</p>

Theorem If $n \ge 0$ is an integer, then $\binom{2n}{2} = 2\binom{n}{2} + n^2.$

Brualdi Chapter 2

1-25

æ

5/13

イロン 不通 と 不良 とう ほん

Definition

A *binary string* is a string that consists of 0's and 1's.

 $\binom{n}{k}$ is the number of binary strings of length *n* with exactly *k* 1's.

Note: 2^n is the number of binary strings of length *n*. 2^n is also the number of subsets of a set of size *n*.

(B) (B)

Theorem For each integer $n \ge 0$,

$$2^n = \sum_{k=0}^n \binom{n}{k}.$$

Brualdi Chapter 2

1-25

2

7/13

イロン 不通 と 不良 とう ほん

Theorem If $n \ge r$ are integers, then

$$\binom{n+1}{r+1} = \sum_{k=0}^n \binom{k}{r}.$$

Brualdi Chapter 2

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

8/13

= 990

Definition A *lattice path* is a path in the plane that only uses steps \rightarrow and \uparrow .

э

9/13

白 ト ・ ヨ ト ・ ヨ ト

Theorem For integers $n \ge k \ge 0$, the number of lattice paths from (0,0) to (n-k,k) is $\binom{n}{k}$.

白 ト ・ ヨ ト ・ ヨ ト

Theorem For integers $n \ge 0$,

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}.$$

Brualdi Chapter 2

・ロト ・ 四ト ・ ヨト ・ ヨト

1-1

≣ ৩৭৫ 11/13

Theorem For integers $n \ge 0$,

$$\sum_{k=0}^{n} (k+1) \binom{2n-k}{n} = \binom{2n+2}{n+2}.$$

Brualdi Chapter 2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem Let $m \ge 0$ be an integer. The number of sequences (a_1, \ldots, a_n) such that $a_1 \le \cdots \le a_n \le m$ is $\binom{m+n}{n}$.

回下 くぼと くほとう