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This lecture will contain many proof techniques

that can be used when dealing with binomial

coefficients. This lecture is difficult, yet

extremely important. It may take two days to

complete.
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Section 2.3(
n
k

)
is the number of subsets of {1, . . . , n} of

size k .

.

Alternatively,
(
n
k

)
is the number of ways to

choose a committee of k people from a group of

n people.

.

If k > n, then
(
n
k

)
= 0.
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Theorem
If n ≥ k ≥ m ≥ 0 are integers, then(

n

k

)(
k

m

)
=

(
n

m

)(
n −m

k −m

)
.

.

.
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Theorem
If n ≥ 0 is an integer, then(

2n

2

)
= 2

(
n

2

)
+ n2.

.

.
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Definition
A binary string is a string that consists of 0’s

and 1’s.(
n
k

)
is the number of binary strings of length n

with exactly k 1’s.

.

Note: 2n is the number of binary strings of

length n. 2n is also the number of subsets of a

set of size n.

Brualdi Chapter 2 1-25 6 / 13



Theorem
For each integer n ≥ 0,

2n =
n∑

k=0

(
n

k

)
.

.

.

.
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Theorem
If n ≥ r are integers, then(

n + 1

r + 1

)
=

n∑
k=0

(
k

r

)
.

.

.

.
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Definition
A lattice path is a path in the plane that only

uses steps → and ↑.
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Theorem
For integers n ≥ k ≥ 0, the number of lattice

paths from (0, 0) to (n − k, k) is
(
n
k

)
.

.

.

.
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Theorem
For integers n ≥ 0,

n∑
k=0

(
n

k

)2

=

(
2n

n

)
.

.

.

.
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Theorem
For integers n ≥ 0,

n∑
k=0

(k + 1)

(
2n − k

n

)
=

(
2n + 2

n + 2

)
.

.

.

.
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Theorem
Let m ≥ 0 be an integer. The number of

sequences (a1, . . . , an) such that

a1 ≤ · · · ≤ an ≤ m is
(
m+n
n

)
.

.

.

.
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