MATH 484 - ASSIGNMENT 1

Due January 24, on Gradescope at 11:59pm Central Time.
See the syllabus for expectations regarding homework assignments.
The assignment is worth 40 points. Assignments typed in in $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ will receive a 4 point bonus.
Give a full written solution to each of the following questions:
(1) (10 points) Find the global and local minimizers of the following functions. For each minimizer, state whether it is a strict global/local minimizer. (You do not need to write a proof, but please provide some plain-language explanation.)

- $f(x)=x^{4}-32 x$
- $f(x)=\left\lfloor x^{2}\right\rfloor$
- $f(x)=(x-2)^{2}+|x|$.
(2) (10 points) Let V be a vector space equipped with the field \mathbb{R} and an inner product $\cdot: V \times V \rightarrow \mathbb{R}$, and let $\mathbf{u}, \mathbf{v} \in V$ be two vectors. Prove that $\mathbf{u} \cdot \mathbf{v}=0$ if and only if $\|\mathbf{u}\| \leq\|\mathbf{u}+c \mathbf{v}\|$ for every real number $c \in \mathbb{R}$.
(3) (10 points) For a function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a real number $c \in \mathbb{R}$, define the sublevel set f_{c}^{-}as

$$
f_{c}^{-}=\{x \in \mathbb{R}: f(x) \leq c\}
$$

Prove that f is coercive if and only if for every $c \in \mathbb{R}$, there exists a radius $R>0$ such that $f_{c}^{-} \subseteq(-R, R)$, where $(-R, R)$ is the open real interval from $-R$ to R.
(4) (10 points) Let x_{1}, x_{2}, \ldots be a convergent sequence of real numbers. Recall that for $L \in \mathbb{R}$, we say that

$$
\lim _{k \rightarrow \infty} x_{k}=L
$$

if and only if for every $\varepsilon>0$, there exists a natural number N such that whenever $k \geq N,\left|x_{k}-L\right|<\varepsilon$.

- Using this definition of a limit, prove that if $x_{k}>0$ whenever k is even and $x_{k}<0$ whenever k is odd, then $\lim _{k \rightarrow \infty} x_{k}=0$.
- Give an example of a convergent sequence that satisfies the properties described in this question.

