MATH 484 - ASSIGNMENT 1

Due January 24, on Gradescope at 11:59pm Central Time.

See the syllabus for expectations regarding homework assignments.

The assignment is worth 40 points. Assignments typed in in LATEX will receive a 4 point bonus.

Give a full written solution to each of the following questions:

- (1) (10 points) Find the global and local minimizers of the following functions. For each minimizer, state whether it is a strict global/local minimizer. (You do not need to write a proof, but please provide some plain-language explanation.)
 - $f(x) = x^4 32x$
 - $f(x) = \lfloor x^2 \rfloor$
 - $f(x) = (x-2)^2 + |x|$.
- (2) (10 points) Let V be a vector space equipped with the field \mathbb{R} and an inner product $: V \times V \to \mathbb{R}$, and let $\mathbf{u}, \mathbf{v} \in V$ be two vectors. Prove that $\mathbf{u} \cdot \mathbf{v} = 0$ if and only if $\|\mathbf{u}\| \leq \|\mathbf{u} + c\mathbf{v}\|$ for every real number $c \in \mathbb{R}$.
- (3) (10 points) For a function $f : \mathbb{R} \to \mathbb{R}$ and a real number $c \in \mathbb{R}$, define the sublevel set f_c^- as

$$f_c^- = \{ x \in \mathbb{R} : f(x) \le c \}.$$

Prove that f is coercive if and only if for every $c \in \mathbb{R}$, there exists a radius R > 0 such that $f_c^- \subseteq (-R, R)$, where (-R, R) is the open real interval from -R to R.

(4) (10 points) Let x_1, x_2, \ldots be a convergent sequence of real numbers. Recall that for $L \in \mathbb{R}$, we say that

$$\lim_{k \to \infty} x_k = L$$

if and only if for every $\varepsilon > 0$, there exists a natural number N such that whenever $k \ge N$, $|x_k - L| < \varepsilon$.

- Using this definition of a limit, prove that if $x_k > 0$ whenever k is even and $x_k < 0$ whenever k is odd, then $\lim_{k\to\infty} x_k = 0$.
- Give an example of a convergent sequence that satisfies the properties described in this question.